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Systems with competing interactions can be often exactly solved on a restricted 
subspace of the parameter space, called an order or disorder trajectory. A simple 
method introduced within the transfer matrix formalism allows for the calcula- 
tion of the free energy and spin-spin correlation functions along the order and 
disorder lines of the Ising model with all possible interactions around a face of 
the square lattice (IRF model). The general eight-vertex model is thoroughly 
examined and shows full analogy with the quantum spin chain results of the 
previous paper. 

KEY WORDS: Eight-vertex model; interactions around a face; order and 
disorder lines; transfer matrix. 

1. INTRODUCTION 

This is the second in a series of papers devoted to the study of order (OL) 
and disorder (DOL) lines in different models with competing interactions. 
These lines (or surfaces) run through the space of interaction parameters 
and are characterized by a minimum of the correlation length along the 
competition axis. In many respects there is a strong resemblance between 
the properties of the spin-spin correlation functions near a disorder or 
order line and, respectively, near a phase boundary. For example, the 
spin-spin correlation functions change in character and also display non- 
analytic behavior when a DOL(OL) is crossed at fixed temperature/l) 
However, this behavior does no t  reflect a phase transition. Also, this 

i Northeastern University, Boston, Massachusetts 02115. 
z On leave from and address after September 1, 1982: Institute for Theoretical Physics, Eotv6s 

University, 1088 Budapest, Puskin U. 5-7, Hungary. 

247 
0022-4715/82/1000-0247503.00/0 �9 1982 Plenum Publishing Corporation 



248 Ruj=~n 

peculiar behavior is associated to a minimum rather than to a maximum of 
the correlation length. 

In the previous paper, (1) referred to hereafter as I, the concept of 
OL(DOL) was introduced for quantum spin systems at T = 0, where the 
method of Peschel and Emery (2) allows to extract a variety of useful 
information. In view of the rigorous (and approximate) relationship be- 
tween quantum spin chain Hamiltonians and transfer matrices of two- 
dimensional models, (3) one expects order and disorder lines in these latter 
models as well. The main goal of this paper is to introduce a simple method 
for the calculation of the free energy and of correlation functions along the 
OL(DOL) in two-dimensional models. This method is close in spirit to the 
method used by Kurman, Thomas, and Muller, (4) who recently calculated 
the order surface of the one-dimensional X Y Z  antiferromagnetic chain in 
an arbitrary field at T = 0. 

In Section 2 the "interactions-around-a-face" (IRF) model is defined 
on a square lattice and its row-to-row transfer matrix is constructed. The 
connection to quantum formalism is made clear and it is shown how to 
choose an ansatz for the eigenvector ("ground state") corresponding to the 
largest eigenvalue ("ground state energy") of the transfer matrix. It turns 
out that the order surface of the IRF model is beyond the "horizon" of the 
Boltzmann weights. When an appropriate analytic continuation is made for 
the IRF model with an even interactions only (even model) one recovers 
the form (2.17) obtained in I. In Section 3 the diagonal-to-diagonal transfer 
matrix is constructed and given in terms of Pauli matrices. A properly 
chosen ansatz is shown to be the ground state on the disorder surface. For 
the even model (which is the dual of the eight-vertex model) it is shown that 
a duality transformation maps the order surface into the disorder surface 
and vice versa. Finally, in Section 4 the formalism is applied to the Ising 
model with ferromagnetic nearest-neighbor (n.n.) interactions and anti- 
ferromagnetic next-nearest-neighbor (n.n.n.) (diagonal) interactions. 

2. ORDER AND DECOUPLING LINES FROM THE ROW-TO-ROW 
TRANSFER MATRIX 

Consider an n • m square lattice with Ising spin varibles defined on 
the lattice sites. The spins interact with all possible interactions within a 
basic square (or face). The Boltzmann weight of such a face (Fig. 1) is given 
by 

K .  = (2.1) 
Following Baxter (s) we call this model an "interactions-around-a-face" 
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Fig. 1. The basic face bordered by the spins sl, s2, s~, and s~. All possible interactions are 
allowed between these spins. 

(IRF) model. The partition function of IRF models is given by 

Z({K~ )) = ~]. Hw(so,sj+l[si+, , j ,s i+14+, ) (2.2) 
(s,y= - 1} i , j  

If the partition function Z is expressed as a function of the different 
weights {w} instead of the interactions {K,~}, the IRF model is given in 
"weight representation" rather than in the "interaction representation." 
Supposing one has periodic boundary conditions, the partition function 
(2.2) can be thought as being the iterated kernel of a linear integral 
operator transferring the interactions from one row of spins to the next row 
of spins. In matrix representation the row-to-row transfer operator is 
defined as 

TRR,,s" ---- I- '[w(j ,J  + 1),.s, (2.3) 
J 

where s =  (sl,s2 . . . . .  s,), s ' =  ( s { , s ~ , . . . ,  s;,) represent the configuration 
space of the ith and (i + 1)th row, respectively, and 

, �9 . . . . .  S t S ~ "~ w ( j , j  + 1)s,~,= 6s~i 6,~,,~ 6~j_~,~j_w(sj ,Sj+ 1 ] ~/-, ~/+1) 

• %+>5"+2"'' %.,*; (2.4) 

The partition function is expressed as 

g = Tr(T~R)m-----~3,# = e ""f (2.5) 
- " r t ' / - - >  ~ 
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where X0 is the largest eigenvalue of the transfer matrix and f is the free 
energy per spin 

f = - F / k  B Tmn (2.6) 

Similarly, the correlation functions between spins lying on two next- 
nearest-neighbor rows is given by 

<q,01AB Iq,0> 
(A(s)~(s')) - <~ol ~o> (2.7) 

where [t)o > is the ground state corresponding to X o, and A and B are given 
functions of spins. In particular, 

a~ = @o1%%.+R1+o> 
<q,01%> (2.8) 

corresponding to Eq. (3.3) of I. 
The correlation functions between spins situated on rows R distance 

apart is given by 

<A = 2 f  1" No ] <+~176 (2.9) 

In particular 

Xq )R 
G~- = ( s O . s ~ + . j > ~  ( ~oo I@~ (2.10) 

where X 0 is the largest eigenvalue (Xq < h0) corresponding to a nonzero 
@01slq~q> matrix element. 

The calculation of G~ requires the knowledge of Xq, i~q) in addition to 
X0, I%> and cannot be calculated by our method. 

Now we turn back to the study of the transfer matrix (2.3)-(2.4). In 
order to make clear the analogy with the quantum formalism one needs a 
representation-independent form. Following Baxter, (s'6) one expands the 
w ( j , j +  1) matrices in terms of the Pauli matrices 01=  ox; o 2 =  oxoz; 
0 3 = 0 z and 0 4 = 1 as 

4 4 

[w(j,j + 1)Is,s,= E E e,J,o,:d,:2,j+, (2.11) 
J ~ l  J ' = l  

where os/~ is the (a, t )  element of the o J Pauli matrix. The one-to-one 
relationship between the coefficients Pss" and the Boltzmann weights w (or 
to in terms of the eight-vertex model) is given in Table I. A given Pss" 
coefficient should be calculated by adding with the corresponding sign the 
different weights w (a blank space means a zero table element) and by 
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dividing at the end of the sum by the number of its terms. The same is true 
when inverting from Pjg,'S to weights, except that one does not divide the 
sum by the number of its terms. One may regard the partition function as 
being a function of the Pgg,'s. This will be called "row-to-row operator 
representation." Note that some Pjj, coefficients (namely, P11, P14, e41, and 
P44) should be positive and can be zero only when some of the interactions 
K,, are infinite. 

The IRF models can be exactly solved if they satisfy the generalized 
star-triangle transformation. (5) Such are the symmetric eight-vertex model, 
the (general) six-vertex model, (7) the free fermion model, (8) and the hard 
hexagon model. (9) The IRF model consisting of only even interactions 
between spins is invariant under flipping all spins at once: 

W ( S , , S  2 I S],S~) = W ( - -  S, ,  --  S 2 I --  S'I' --  S;)  (2.12) 
and for the sake of simplicity will be called the even model. It corresponds 
to the spin representation of a general eight-vertex model. Another symme- 
try of interest is the reflection symmetry: 

w ( j , j  + 1) = w(j  + 1,j)  (2.13) 

implying that each w(j, j + 1) matrix is symmetric and Pss' = PJ'J. 
The next step is to choose a good ansatz for the ground state. In 

analogy to the quantum chain [I, Eq. (2.19)] one considers a state which is a 
direct product of one-spin operators. The physical significance of such a 
choice is the following. Suppose our IRF model has a T = 0 a ground state 
which in some region of the parameter space is ferromagnetic. It may be an 
ordered ferromagnetic state (all spins pointing up or down with the same 
probability) or it can be a disordered ferromagnetic state, in the sense that 
only the state with all spins up is a ground state, being fixed by an external 
field. In any case, the state describing a row in this ground state would be 
I1'1" �9 �9 �9 I"). The most general translational invariant ansatz which is a direct 
product of one-spin operators can be written as 

] t ) + ) = ( I I e ~ S X ) l ~ . . . d  ") (2.14a) 
- j  

where a is a free parameter. In other cases one may start with a different 
T = 0 row state and construct in a similar way an ansatz of form (2.14), 
explicitly displaying the expected symmetries of the ground state. The 
exponential form of (2.14) ensures that the vector is nodetess (has only 
non-negative entries). Since the T RR matrix is non-negative, the Perron- 
Frobenius (1~ theorem tells us that the eigenvector corresponding to the 
largest eigenvalue of T RR should have exactly this property. It follows that 
if one is able to show that (2.14) is an eigenvector on some restricted 
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parameter subspace, it also should be the [~P0) state. If this parameter 
trajectory runs through an ordered phase it is called an order line, while 
when it runs through a disordered phase it will be called a decoupling line to 
distinguish it from the disorder lines treated in the next section. The 
eigenvalue problem 

TRR[4'+ )----I ~J~ ' (J 'J+ 1)][ I~I e~<~ ["I'~... I ' ) =X [  l~It e'~~ ~) 

(2.15) 
is satisfied if 

k( j ,  j + 1)exp[ a(of  + of+ l) ]l"l" �9 �9 *)  --- ~ti/"exp[ a(m x + m~- ,) ]l"l" �9 �9 �9 "1') 
(2.16) 

and then 

Z -- a '% f =  lna (2.21) 

The simple rule of thumb when calculating the coefficients a, b, c, and d is 
to start with the original form of w(i , i+  1) (2.11), to replace ~? by 
exp(-2aof) ,  to expand in ~x, and finally to group together the correspond- 

or, in other words, if the operator 

(~(j , j  + 1)= e x p [ - a ( o f  + ojX+l)]w(j,j -[- 1)exp[oL(l~ x --t- i~t_l) ] (2.17) 

is independent of of,  of+ ] when acting on ]~"... I'). First expand #(j ,  j + 1) 
as 

~(j , j  -~ 1) = A --~ B o / +  Co';+ l -~ J~ojzaj+l (2.18) 

where A,/~, C,/5 are operators containing oj x and oj% i. When acting with 
(2.18) on the state I1'1".-. I') every other o z will be replaced by the 
corresponding eigenvalue (+ 1 in our case). The next step is to expand the 
operator 

e~ + B + C + /5 = a + bof + eof+ , + do;o7+ l (2.19) 

where now the coefficients a, b, c, and d are c-numbers involving different 
expressions of the coupling constants Pjj. and a. Finally, Eq. (2.16) and 
(2. I5) are satisfied if 

b = 0  

c = 0 ( 2 . 2 0 )  

d = O  
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ing terms. A straightforward but lengthy calculation leads to 

a = P44 -T- (P24 + P42) S --- (P34 q- P43) C 

-t- P33 C2 + P22 $2 - (P23 4- P32)SC (2.22a) 

b = P , ,  -T- (P34 + P,2)S +- (P24 + e,3)C 

+ P23 C2 + P32 $2 - (P22 + P33) SC 

= c(P,a ,+ P,,,t ) (2.22b) 

d = P,,  -T- (P3, + P13) S +- (P,z + P2,) C 

+ P22 C2 + P33 S2 - (P23 + P32) SC (2.22c) 

The + sign refers to the ansatz 

} j I& 

while S = sinh2a, C = cosh2a. If one considers only symmetric models 
w(j ,  j + 1) = w( j  + 1, j )  one has to fulfill only the two equations (2.22b, c). 
One equation is used to express the parameter a, while the remaining 
equation (and the requirement that a is real) defines the order or decou- 
piing subspace. The solution of (2.22b, c) is in general quite complicated 
because of the presence of linear and quadratic terms in sinh2a, cosh 2a. 
However, if the model has the up-down symmetry (2.12) ("even" or 
eight-vertex model) the linear terms vanish and the solution is quite simple. 
Introducing the parametrization 

P i z  = A J  

P22 = - g ( 1  - 7) 

P33 = J(1 + 7) 

P14 = h 

P23 = k 

one has 

and 

a = P44 + J + ./7 cosh 4a - k sinh 4a 

/7= ,{ sinh4a + /~cosh4a  = 0 

( k  - -  1) --/7: sinh4a + V cosh4a = 0 

= h / J ,  k =  k / J  

(2.23) 

(2.24) 

(2.25) 
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Expressing sinh 4a and cosh 4a as 

sinh 4a = 

cosh 4a = 

- / 7 2 / + / ~ ( A  - 1) 

/7"2 - 2/2 

2/(A - 1) - hk 

~ -  V 2 

(2.26) 

it follows that the order surface is given by the simple expression 

(A -- 1)2+ k -2 =/7:  + 3': (2.27) 

subject to the constraint that a is real: 

7(A-- 1 + y) > k ( k + h )  (2.28) 

Note the complete analogy with the quantum chain results [I, Eq. (2.17)]. 
The lines of multicritical points are given now by 

7 = ---/~, A -- 1 = _+/7 (2.29a) 

0 v ~ 2/_ /~ < ~ ,  A ~ -- ~ ,  /7--> _+ ~ ,  A = ___/7 (2.29b) 

The most general symmetric form for w(i, i + 1) is given in the even model 
by the following expression (see Fig. 3): 

w(s 1, s 2 ;s~, s;) = exp (sis i + s2s'9 ) + 

+x3( 14 + s'1 2) (2.30) 

and leads to the Pss" coefficients (see Table 1): 

PI1 = e x p ( - K  1 + K4)cosh(K 2 - 2K3) ~--- J A  

P22 = e x p ( - K  l + K4)sinh(K 2 - 2 K 3 ) =  - J ( 1  - 2/) 

P33 = exp(Kl + K4)sinh(K 2 + 2K3) = J(1 + 2/) (2.31) 

P14 = exp(- -  K4) = h 

P44 = exp(K1 + g4)cosh(g:  + 2K3) 

The condition (2.28) involves that Pll < -P22,  which is possible only 
at T = 0. Therefore the order surface (2.27) lies beyond the horizon of the 
IRF model. The IRF model can be analytically continued by allowing the 
PsJ' coefficients to take any real value. In this case the Eq. (2.27) gives the 
order surface for the eight vertex model (allowing for zero or negative 
weights, too). The remarkable analogy to the quantum spin chain suggests 
that these order multicritical points are in the same universality class with 
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the/~ = 1; ~, = 0 '(A = O) point of the XY chain (see I, Section III). In the 
quantum case the A = 0 condition defined a free fermion model. Indeed, 
this is also the case for the row-to-row transfer matrix. To see this one starts 
with the free fermion condition (8) for the eight-vertex model: 

0alO) 2 + 603004 = s + 097008 (2.32) 

Using Table I this condition is rewritten as 

PnPn4 + P14P41 = P22P33 + P23P32  (2.33) 

If A = 0 (Pll = 0) the free fermion condition (2.31) has exactly the form 
(2.27)! 

So far one has considered the row-to-row transfer matrix in a (success- 
ful) attempt to determine order (and decoupling) lines. In the next section 
one attacks the problem of disorder trajectories. 

3. DISORDER LINES FROM THE DIAGONAL-TO-DIAGONAL 
TRANSFER MATRIX 

Suppose one builds up the square lattice from diagonal to diagonal, as 
shown in Fig. 2. First one adds the faces 1, 3 . . . . .  n - 1 (n is even) and 
one moves from the diagonal s to the diagonal s'. This is represented by the 
matrix 

W = U I U 3 , . .  U n _  1 ( 3 . 1 )  

Then one adds the faces 2 , 4 , . . . ,  n, between the diagonal s' and the 
diagonal s". The corresponding matrix is 

V= U2U4... U, (3.2) 

The full diagonal-to-diagonal transfer matrix is given by (5) 

T ~ VW (3.3) 

where 

(Uj-)s,s ,  = 8s],s,l . . . 8 S j _ l , s j _ W ( S j _ l ,  S j , S j + l [ S j _ l ,  S j , S j + l ) ~ s j . . , s j +  o . . 8sn,sf, ( 3 . 4 )  

and represents the j th  face added as shown in Fig. 2. Note that Uj is 
diagonal in the j - 1, j + 1 indices. A representation-independent operator 
form is obtained by expanding Uj in a set of Pauli matrices as follows: 

4 4 4 
/"  ~G , O ,O , ,,s,+, is; = g Z E (3.5) 

J l  =3  3"2 = 1 J3=3  

This expansion has the same interpretation as Eq. (2.11). The sum over J1 
and J3 is restricted to the diagonal matrices o 3 and 0 4 because Uj is 
diagonal in indices j -  1 and j + 1. In total there are 16 pJJ3 expansion 
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11 I I  I I  I I  

$2 S2j S2 j . , Sn 

11 I I  I I  

r~ s 3 s2j_~ s2j.~ 

I Sj 

Sj'_I Sj.1 

Sj_~ S j .  

Sj 
Fig. 2. A square lattice is built from diagonal-to-diagonal. The transfer matrix now accounts 
for the interactions within the diagonals s and s" and is the product of two matrices. A basic 
face Uj is constructed along a diagonal and depends on three indices, j -  1,j, andj + 1. 

coefficients and their relationship to the Boltzmann weights are given in 
Table II, which should be used in the same way as Table I. When the 
partition function is considered as a function of pf,.t3 one might say it is 
given in the "diagonal-to-diagonal operator representation." 

The construction of the ansatz is again suggested by the analogy to the 
quantum chain ground state [I, Eq. (2.18)]. At high temperatures the state 
[0) = ] ~ - " ~ )  represents the ground state of the completely disor- 
dered row. Generalizing the form suggested by the Peschel-Emery method 
[I, Eq. (2.18)1 one has 

__( z I~o>~,B,~ exp [~176 + fl~ 2k+2 + 8(02~ + Ozk+l)] IO> 

(3.6) 
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where 

10)= ~ I s , ) i s2 ) . . . { sN)  (3.7) 
(sj= • 1) 

Again, the exponential form of the ansatz and the Perron-Frobenius 
theorem (1~ ensures that (3.6) is a good candidate for the eigenvector 
associated with the largest eigenvalue. Following the definition of T DD (3.3) 
one requires that 

and (3.8) 

leading to 

TDDI~o),,,#,O = ~kltP0)~,B,8 , )~ = X~)~ 

Restricting the discussion to symmetric matrices 

(3.9) 

U j ( j -  1, j  + 1) = Uj(j + 1 , j -  1) (or P~d3 = PS3J'3) (3.10) 

one has a = fl and the state (3.6) is an eigenstate provided 

= e x p [ - a ( o f _ , o ;  + ojzoj+l) - -  801] Uj exp[ a(oj_,oj z + ofoj+t) + 8o1] 

(3.11) 

is independent of o~'s when acting on the [0) state. This implies that the 
coefficients of the operators o/_ 1, o/ ,  of_ lof, of_ lof+ 1, and of_ lo/of+ l must 
be zero. Even after using two equations for fixing the parameters a and 8, 
there are still three equations left, restricting strongly the dimension of the 
disorder subspace if there is such a solution at all. Additional symmetries 
improve the situation. For the even (eight-vertex) model, for example, one 
has only two equations and one free parameter, a (8 = 0 in this case). This 
is not just a lucky coincidence. Actually, by introducing the bond Pauli as 
for the quantum chain [I, (2.12)]: 

%,/2 = 

k<j 

(3.12) 

the operator w(j,  j + 1) [Eq. (2.11)] is mapped into the operator Uj+ 1/2 and 
the ansatz (2.14a, b) (t~p+) + I~p_ )) into the ansatz [~Po) .... 0 of Eq. (3.6). To 
make this relationship even more transparent one introduces the following 
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parametrization: 

p433 = AJ 

e?3= - d ( 1  - "y) 

P144 = J(1 + y) (3.13) 

P334= h 

p#4 = _ k 

Solving Eqs. (3.9) one obtains that in this parametrization one recovers 
exactly the equations (2.24)-(2.29)! The only difference is that now the 
multicritical points (2.29) are from the same universality class as the T = 0 
multicritical points of the ANNNI model (for details see I, Section 3). 
Furthermore, when expressing the free-fermion condition (2.30) using Table 
II one gets 

p33p444 -I- p 3 3 p r  34 43. p34p43 = P2 P2 + (3 .14)  

Again, for A = 0 one recovers from (3.13) and (3.14) the disorder surface 
(2.27). 

, 

w( sl,s21sl,s'z) = exp[ -~ ( sls2 

I 
S, 

A N  E X A M P L E  A N D  C O N C L U S I O N S  

For example, consider the model shown in Fig. 3: 

+ s~s' 2 + sis I + s2s~) + Msls '  2 + Ls2s' 1 ] 
I 

El2 S 2 

- / \ 
\ 

K/2 \ K/2 

\\L 
\ 

\ 

(4.1) 

$1 K / 2 $2 
Fig. 3, The Ising model with next-neighbor and diagonal interactions. 
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This is an Ising model with n.n. interactions and diagonal (n.n.n.) compet- 
ing interactions. This model has been proposed as a symmetrized version of 
the ANNNI model for K > 0, M > 0, L < 0 and is supposed to share 
many of its properties, including the presence of an incommensurate 
phase. (11) For K > 0, L = M < 0 the model (4.1) has a critical line with 
continuously changing exponents. (12) 

Consider first the disorder lines. Using Table II one gets 

p33 = e-Msinh(L) = - J(1 - y) 

P ~  = e-Mcosh(L) = J(1 + V) 

p34 = p43 = 0 
(4.2) 

P334= P343 = �89 = h 

P433 = �89 (eM+Lcosh2K -- e M-c)  = AJ 

p444 = I (eM+Lcosh2K + e M-c)  

and the disorder surface is given by Eq. (2.27). The lines of multicritical 
points are given by Eqs. (2.29) and in general involve that one or more 
coupling constants are infinite, so that T = 0. 

Next consider the order lines. In this case the w ( j , j  + I) matrix is 
symmetric only if L = M. Using Table I one obtains 

P, ,  = e-Xcosh(K - 2L) = h , f  

P22 = e-gsinh(  K -- 2L) = f(-~ - l) 

e l 4  = e41 = 1 = f f  (4.3) 

P23 = P32 = ]~ --- 0 

P33 = eKsinh( K + 2L) = ] (1  + "7) 

P44 = eXcosh( K + 2L) 

and the order surface is given again by (2.17) but in terms of the J, /~, ~, 
and ff parameters. One concludes that the model (4.1) with M = L < 0 has 
both order and disorder lines at the same time. This is the consequence of 
the rotational symmetry of w(j, j + 1). 

In conclusion, in this paper I have introduced a simple method for 
solving exactly the general IRF model along order and disorder trajectories. 
It turns out that the row-to-row transfer matrix formalism offers the 
possibility of calculating the free energy and correlation functions along the 
order trajectory, while the diagonal-to-diagonal transfer matrix allows for 
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the search of disorder trajectories. This latter method can be applied also to 
staggered IRF models. 

The generalization of these results to q-state spins is also possible and 
will be considered in the next paper of this series. 
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